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Abstract

The objectives of this study were to identify and quantitate the germ cell populations of the testes

in sexually mature male turkeys (Trial 1), determine the duration of meiosis based on BrdU labeling

and stereological analyses (Trial 2), and examine the impact of various photoperiods on germinal and

somatic cell populations in immature and adult males (Trial 3). In Trial 1, both testes within a male

had similar stereological components (P > 0.05) for all parameters analyzed. In Trial 2, the duration

of Type-1 spermatocytes and round spermatids in turkeys lasted 4.5 � 0.5 and 2.0 � 0.5 days,

respectively. In Trial 3, the short photoperiod (7L:17D) delayed testicular growth (in the stereological

parameters analyzed). In contrast, the effect of a moderately short photoperiod (10.5L:13.5D) was

comparable to the effect of a long (14L:10D) or increasing photoperiod (7L:17D to 14L:10D) on the

stereological parameters examined. With the exception of the short photoperiod, all other photo-

periods used in this study induced comparable early testicular maturation, with maximum testis
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weight at 29–35 weeks of age. As the males got older, there was a progressive, linear decline in testis

weight through 60 weeks, at which time there were no significant differences among photoperiods. In

conclusion, the duration of meiosis in the turkey was similar to that observed in the fowl and guinea-

fowl. The existence of a threshold of photosensitivity to gonad stimulation in male turkeys is

suggested to be between 7.0 and 10.5 h of light.

# 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Quantitative studies on the impact of various photoperiods on the stereology and

morphology of cells forming the seminiferous epithelium (SE) in domestic avian species

are scarce; they are limited to works by Kumaran and Turner [1] and de Reviers [2] in fowl,

Clulow and Jones [3] in Japanese quail, Marchand and Gomot [4] in ducks, and Brillard [5]

in guinea-fowl. Cellular associations between specific stages of spermatogenesis have been

described; they have facilitated quantitative studies of mammalian spermatogenesis [6,7].

In contrast, such associations in avian species, if they exist, have limited value to quantitate

spermatogenesis, due to the existence of atypical stages [8–10]. The difficulty in describing

such cellular associations in the avian SE is probably due to the relatively rapid transitions

of certain germ cell categories [11]. Overall, the various stages of spermatogenesis in avian

species appear to be of shorter duration than corresponding stages in mammals [12,13]. For

example, while the time from the onset of meiosis to the end of spermiogenesis is about 26

days in the mouse [14], 29.5 days in the ram [15], 37 days in the bull [16], and 45.5 days in

human [17], it is only 14 days in the fowl or drake [12,13], 11 days in the quail [18] and 14

days in guinea-fowl [19].

From a quantitative perspective, the efficiency of spermatogenesis is reflected in the

number of spermatids derived from a single spermatocyte and on the ability of a given

spermatid to transform into a functional spermatozoa. This efficiency is a strong indicator

of the reproductive potential of an individual male [15,16,20]. In species with seasonal

reproductive cycles (e.g. poultry), age and photoperiod influence the variation in testis

weight and stereological characteristics of the germ cells in the SE of the fowl [21,22],

turkey [23] and guinea-fowl [24,25].

The response of commercial poultry species to photoperiod is species specific. Male

fowl raised under short-constant days (8L:18D) reached sexual maturity 3–4 weeks later

than those subjected to a long-constant photoperiod (16L:8D) [21], whereas turkeys [23] or

guinea-fowl males [24] subjected to comparable short-constant days (7L:17D) had sexual

maturity delayed by 20–30 weeks. Subjecting male fowl [20], and guinea-fowl [25] to

increasing photoperiods may, depending on the age at photostimulation, result in

precocious and persistent testicular development over the reproductive season. The effect

of increasing photoperiods on the onset of testicular development, germ cell populations

and sperm output over the entire reproductive season in turkeys is not known. In the present

study, three experiments were conducted to help elucidate the impact of age and
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photoperiod on testicular growth, semen output and on the histological and stereological

characteristics of the SE during the reproductive season.

2. Materials and methods

2.1. Experiment 1

Male turkeys (BIG 6 medium; British United Turkeys (BUT), Chester, UK) were

subjected to a 14L:10D photoperiod from 23 weeks of age. At 36 weeks of age, 34 males in

semen production were weighed and euthanized with pentobarbital (Sanofi, la Ballastière

33501 Libourne, France; 1 mL/kg body weight). Testes were removed, weighed, and cut in

half. One piece was fixed at room temperature (RT) in Holland’s Bouin (90%, v/v) plus a

saturated solution of mercuric chloride (10%, v/v). The other half was used immediately

for cell quantification.

2.1.1. Histology, stereological analyses and cell identification

Fixed testes fragments were dehydrated in ethanol, embedded in paraplast and sectioned

at 7 mm. Slides were stained with Mayer’s hemalun (1.5 min) and 8GX Alcian blue

(9 min). Stereological analysis included: relative volume (Vr) of seminiferous tubules (ST);

tubule diameter (Ø); and populations of Sertoli cells (Sert), Type-I spermatocytes (SpcI),

Type-II spermatocytes (SpcII), and round spermatids (SpdR). These cells were identified

by their relative size, shape, and morphology of their nuclei [26] using a BH2-RFL

Olympus microscope (Olympus Optical Co., Tokyo, Japan).

The Vr of individual ST was determined by point counting using a 25-point Hennig grid

(Olympus Optical Co.). For each slide, 40 fields were randomly chosen and counted. This

technique, first described by Chalkley [27], was previously validated in the fowl by de

Reviers [2]. Mean diameters were obtained from 10 cross-sections of ST. Cross-sections

were selected if the ratio of the minimum (Ømin) diameter and maximum (Ømax) diameter

(Ømin/Ømax) of the tubule was �0.85.

2.1.2. Measurement and quantitation of somatic and germinal cell populations

Nuclei diameters in the seminiferous epithelium were obtained with an ocular

micrometer using sections from five males and counting 20 nuclei/cell-type/male. Cell

counts/transverse section (nSert, nSpcI, nSpdR) were estimated from 10 sections of

individual ST/slide. Initial cell counts were corrected using Abercrombie’s correction

factor [28] as follows: n = (cell count/tubular section) � e/(Ø + e). Estimates of different

cell populations per testis (NSert, NSpcI, and NSpdR) were determined as previously

described by Brillard [5].

2.1.3. Estimates of testicular sperm production (TSP)

A fragment of approximately 1 cm3 from each testis (fwt) was weighed, homogenized

in 200 mL of 0.25 M sucrose, and elongated spermatids (el) and testicular spermatozoa

(tspz) were counted using a hemacytometer (6 replicates/testis). Results for each male were
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expressed as follows: TSP/male = right TSP + left TSP with TSP = (el + tspz)/fwt � tes-

testicular weight.

2.2. Experiment 2

Twelve turkeys (BIG 6 medium, BUT), 36–40 weeks of age and in semen production

were anesthetized, the left testis exposed, and injected with 1 mL of 5-bromo-20-
deoxyuridine (BrdU; Cell Proliferation Kit, Amersham, Buckinghamshire, UK). A lethal

dose of pentobarbital was subsequently given to males 0.25, 1–10, and 17 days after BrdU

injection. Both testes were isolated, weighed, fixed for 3 days in alcoholic-Bouin’s fluid,

dehydrated in ethanol, and embedded in paraplast. Sections (7 mm) were incubated for 2 h

at ambient temperature in anti-BrdU monoclonal antibody plus nuclease in a humidified

chamber, washed in PBS, and then incubated again for 30 min at ambient temperature with

peroxidase-conjugated anti-mouse IgG. Sections were flooded with 0.5 mg of 3,3-

diaminobenzidine in 10 mL of phosphate buffer (PB). The staining procedure was stopped

by immersion of the slides in PB. All slides were counterstained with Mayer’s hemalun for

visualization of nuclear morphology. Sections from the right testis were used as controls.

Semen was collected daily from Days 11–17 from males scheduled to be sacrificed on

Day 17. A 10 mL aliquot of each semen sample was diluted (Sol I) in 1990 mL of Lake’s

diluent [29]. A 50 mL aliquot of the diluted semen was further diluted in Lake’s diluent

(plus 0.4% formaldehyde), to give a final semen dilution of 1:20,000 (v/v; Sol II). A 20 mL

aliquot of Sol II was placed on a slide, dried overnight, and then developed as described

above for the detection of BrdU-labeled germ cells.

2.3. Experiment 3

2.3.1. Animal husbandry

A total of 105 immature breeder males (BIG 6 medium, BUT) were subjected to a

progressively decreasing photoperiod (�1 h/week) from 11 to 17 weeks of age, and then

maintained at a 7L:17D photoperiod up to 23 weeks of age. At 21 weeks of age, five males

were randomly chosen and euthanized with pentobarbital. Body weights and individual

testis weights were determined, and the testis was prepared as described previously for

histology. The remaining males were randomly divided into four groups of 25 males each,

and placed in environmentally controlled pens adjusted to 21 � 4 8C. Group 1 was exposed

to a photoperiod of 7L:17D, Group 2 to 10.5L:13.5D, Group 3 to 14L:10D, and Group 4 to

7L:17D that progressively increased in light to 14L:10D (+1 h/week from 23 to 29 weeks

of age). All photoperiods began at 08:00 h, with incandescent bulbs adjusted to produce

25 lux at the height of males’ heads. Feed and water were provided (per BUT guidelines)

up to the end of the experiment (60 weeks of age).

2.3.2. Estimates of weekly semen output (WSO)

A total of 15 males per treatment were randomly chosen for further inter-group

comparisons of WSO. A single daily semen collection performed for five consecutive days/

week was optimal for total WSO in the turkey [30]. Therefore, this schedulewas performed in

each group during the following weeks of age: 30–31; 33–34; 39–40; 45–46; 51–52; 57–58.
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2.3.3. Estimates of body weights (BW), testicular weights (TW), WSO/TW, and TSP

Five males from each group were weighed, sacrificed and their testes removed and

weighed at 26, 29, 35, 48 and 60 weeks of age. In order to calculate the ratio WSO/TW in

each group, males in semen production were randomly chosen and sacrificed at 35 and 60

weeks of age. Estimates of WSO/TW were deducted from WSO values obtained either at

33–34 weeks (for TW observed at 35 weeks) or at 57–58 weeks (for TW observed at 60

weeks). Pieces of testes were prepared for quantification of testicular sperm production,

stereological analyses and quantitation of cell populations, as described previously.

2.3.4. Quantitation of spermatogenesis

In addition to Vr, Ø, total length (Lt) of the ST, and NSert, NSpcI, NSpdR and TSP, we

also estimated the meiotic ratio (MR). This was expressed as a theoretical ratio (TR%)

based on the mean MR of five males and calculated as follows: given that each SpcI should

provide four SpdR during meiosis (MR = 4), and that ultimately, the actual ratio of SpcI/

SpdR is dependent on the lifespan of each cell type, TR% = 100 (NSpdR/uSpdR)/4

(NspCI/uSpcI) [31]. u denotes the life-span of a cell type determined from the BrdU

observations.

2.4. Statistical analyses

For Experiments 1–3, testes weights, stereological parameters, and numbers of Sert,

SpcI, SpdR, and TSP were analyzed by ANOVA and statistical significance among means

estimated by Duncan’s multiple range test. In Experiment 3, repeated measures were

analyzed using an ANOVA (factorial-plan) and a Fisher protected least significant

difference (PLSD) test when appropriate. Values with P < 0.05 were regarded as

significantly different. Correlation-matrix and Z tests were used between testis weight, Vr,

Ø, nSert, nSpcI, nSpdR, and RM. Statview 4.5 software for PC computer was used for these

analyses (Abacus Concept Inc., Berkeley, CA, USA).

3. Results

3.1. Experiment 1

3.1.1. Histology of the seminiferous epithelium

The general organization of the SE was similar to that in other poultry species. Sertoli

cells were identified by their oblong shape and refringent nuclei most frequently observed

between the spermatogonia (Spg) and SpcI populations (Fig. 1). In immature birds, only

Sert and Spg populated the SE. Spermatogonia and their nuclei were characteristically

large and round. Sertoli cell nuclei were oval shaped and smaller than Spg nuclei and

appeared randomly distributed between the Spg in immature testis and between the Spg,

SpcI, and SpcII’s in mature testis. Three different types of Spg were identified in mature

testis; they were differentiated based on nuclear diameter, heterochromatin appearance and

distribution, and the relative position of the Spg to the ST basement membrane. The most

frequently observed Spg (Spg1), the largest of the three, had a round-shaped nucleus about
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6.6 � 0.1 mm in diameter and contained dusty, pale heterochromatin (Fig. 1). The Spg1

cells were in direct contact with the ST basement membrane. The smallest Spg (Spg2) had

a mean nuclear diameter of 4.2 � 0.1 mm and possessed a bundled, well-stained

heterochromatin. The Spg2 were not always associated with the ST basement membrane

and were most frequently observed between the SpcI. The third type (Spg3) was darker,

rarely observed, and had a mean nuclear diameter of 4.0–5.6 � 0.2 mm. Its

heterochromatin was dispersed in small bundles interconnected by narrow filaments.

The Spg3 were always associated with the ST basement membrane (Fig. 1).

In mature turkeys, the SpcI nuclei had the largest diameters of any cell in the ST (Fig. 1).

In the preleptotene stage, the nuclear diameter was about 6.9 � 0.1 mm (Table 1b); its

chromatin consisted of randomly dispersed, narrow filaments. In the leptotene and

zygotene stages, nuclear diameters were about 6.5 � 0.1 mm, and its chromatin formed

thickened eccentrically located filaments. As in the fowl [26,32], SpcI in the early

pachytene stage contained thick and tortuous chromatin distributed throughout the nucleus.

Although rarely observed, the nuclei of SpcII were smaller than SpcI nuclei. The SpcII

nuclei were characterized by thick clumps of chromatin, often associated with the nuclear

membrane. Round spermatids were characterized by their small, spherical nucleus about

3.5 � 0.1 mm in diameter (Table 1b) and located just above or between bundles of filiform-

shaped spermatids (Fig. 1).

J. Noirault et al. / Theriogenology 65 (2006) 845–859850

Fig. 1. Cross-sections of seminiferous tubules (ST) from a sexually mature turkey. Arrows highlight Sertoli cell

nuclei between the spermatogonia (Spg) and larger, meiotic primary (SpcI) and secondary spermatocytes (SpcII).

Round (SpdR) and elongating (el) spermatids are observed more toward the ST lumen. (arrows = 12 mm).



Testes weights (TW), Vr, Ø, and Lt are presented in Table 1a. The left testes (L) was

heavier than the right (R) testes (P < 0.001) in 24 of 25 males examined, with a mean ratio

of LTW/RTW = 0.56. While there were significant differences in the Lt between LTand RT,

there were no significant differences between testes in Vr and Ø (Table 1a). No significant

differences were observed per gram of testis (Table 2a) in individual males. However, the

mean populations of NSert, NSpcI, or NSpdR, as well as TSP, were significantly greater in

the left compared to the right testis (Table 2b). Total sperm production in the right testis was

only 58% of the left testis.

3.2. Experiment 2

BrdU-labeled preleptotene SpcI were observed within 6 h after injection (Fig. 2A). On

Days 1 and 2 following BrdU injection, zygotene and pachytene SpcI’s were labeled and

after Day 4, SpcII were labeled with BrdU. Early SpdR nuclei with uncondensed chromatin
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Table 1

Testes weights and stereological analysis of testicular components in sexually mature male turkeys subjected to a

14L:10D photoperiod from 23 weeks of age (Experiment 1)

(a) Testicular weights and seminiferous tubule stereology

Testis Weight (g) Vr (%) Ø (m) Lt (m)

Left 34.52 � 1.66b 83.4 � 0.2a 205.0 � 3.0a 529.0 � 26.8b

Right 19.36 � 1.31a 83.1 � 0.3a 200.7 � 2.1a 322.2 � 21.1a

P <0.0001 >0.05 >0.05 <0.0001

(b) Mean nuclear diameter (mm) of selected germ cells

Spg1 6.6 � 0.1

Spg2 4.2 � 0.1

Spg3 4.0–5.6 � 0.2a

SpcI (prelept) 6.9 � 0.1

SpcI (lept-dia) 6.5 � 0.1

SpdR 3.5 � 0.1

Values with different superscripts (a and b) differ significantly.
a Mean value of the smaller–larger diameter (oval shaped nuclei).

Table 2

Numbers of Sert, SpcI, and SpdR in the left and right testes of sexually mature turkeys (n = 25)

(a) Per gram of testis (�103)

Testis Sert SpcI SpdR

Left 6.6 � 0.2a 61.1 � 2.1a 78.5 � 2.3a

Right 6.3 � 0.2a 54.4 � 1.2bb 75.0 � 2.8a

(b) Per testis (�106)

Testis Sert SpcI SpdR TSP (el + tspz)

Left 4.9 � 0.2x 45.7 � 2.5x 59.7 � 3.6x 7.8 � 0.5x

Right 2.9 � 0.2y 25.3 � 1.9y 34.7 � 2.8y 4.6 � 0.3y

Values in columns with different superscripts differ (a,bP < 0.05; x,yP < 0.01).



and SpdR with more condensed chromatin were found labeled on Days 5 and 6,

respectively (Fig. 2B). The most advanced germ cells labeled on Day 7 were elongating

spermatids (Fig. 2C). From these observations, we extrapolated that the mean lifespan (u)

of SpcI (uSpcI) was 4.5 days and uSpdR was 2.0 days. Since BrdU reaction product was not

detected on condensed elongated spermatids, the duration of complete spermatid

elongation could not be estimated.

3.3. Experiment 3

3.3.1. Body weights, testicular weights and weekly sperm output

Body weights were similar (P > 0.05) among groups at all ages examined. Testes

weights (Table 3) followed a different pattern between groups over the experimental

J. Noirault et al. / Theriogenology 65 (2006) 845–859852

Fig. 2. BrdU-labeled preleptotene SpcI observed within 6 h after injection (A). SpdR were found labeled on Days

5 and 6 (B) and el were observed labeled on Day 7 (C).



period, with an effect of age (P < 0.01) and treatment (P < 0.01). With the exception of

Group 1 in which TW increased up to 60 weeks of age (63.7 � 7.7 g), all other groups had a

rapid increase beginning at 21 weeks, reaching maximum weights at 29 weeks in Group 3

(59.4 � 4.4 g) and Group 4 (70.2 � 8.5 g), and at 35 weeks in Group 2 (71.1 � 12.2 g).

This was followed by gradual decline in TW until 60 weeks. Due to the large inter-

individual differences observed within each group at each age (coefficients of variation

ranging from 15 to 70%), there were no significant differences between maximum TW.

Accordingly, there were no significant differences among groups at 60 weeks of age,

despite a tendency for greater TW in Group 1 compared to other groups (P > 0.06).

In the absence of significant differences between WSO values observed over two

consecutive weeks within each group at each age tested, data obtained within two

consecutive weeks were computed for further intra- and inter-group analyses. In general,

WSO followed patterns similar to those observed for TW with maximum values observed

at 32–33 weeks of age in Groups 3 and 4. Thereafter, WSO progressively declined to 57–59

weeks,where the WSO for Groups 2–4 ranged from 5.5 � 1.4 � 109 spermatozoa and

6.8 � 1.5 � 109 spermatozoa (P > 0.05). In Group 1, WSO was below 1 � 109

spermatozoa up to 46 weeks, and then progressively increased up to 57–58 weeks of

age (peaked at 3.6 � 0.8 � 109 spermatozoa). Like TW, the large inter-individual

differences among individuals within each group resulted in no statistical differences

among groups at 57–58 weeks. In addition, the ratio WSO/TW were 10, 65, 89 and

143 � 106 spermatozoa/g at 34–35 weeks, and 30, 59, 59 and 94 spermatozoa/g at 59–60

weeks in Groups 1–4, respectively. Interestingly, the abdominal massage technique for

collecting semen from Group 1 males (subjected to short photoperiods (7L:17D or

10.5L:10D)) required more vigorous stroking and squeezing of the cloaca to obtain phallic

tumescence and ejaculation.

3.3.2. Analysis of testicular components

No significant effects of photoperiod were detected at 26 weeks of age for any parameter

studied. In Group 1, values for Vr, Ø, Lt (Fig. 3A–C) and NSert, NSpcI, NSpdR (Fig. 4A–C)

increased up to 60 weeks of age. In Groups 2–4, the same values reached a plateau at 29–35

weeks, before undergoing a gradual decline from 36 to 60 weeks of age. At 60 weeks, there

were no significant differences among the four groups for stereological parameters.

Fig. 4D, depicting the MR for the four treatment groups, were similar to the overall patterns
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Table 3

Testicular weights in breeder male turkeys subjected to various photoperiods over the reproductive season

Age (weeks) 7L:17D 10.5L:13.5D 14L:10D 7L:17D to 14L:10D

21 3.2 � 0.5

26 21.6 � 5.1a,x 26.2 � 3.9a,x 40.3 � 2.7a,y 19.6 � 9.2a,x

29 21.0 � 9.8a,x 57.1 � 4.2b,y 59.4 � 4.4b,y 70.2 � 8.5b,y

35 19.4 � 5.0a,x 71.1 � 12.2b,y 51.5 � 4.6b,y 64.0 � 8.6b,y

48 22.2 � 5.5a,x 60.3 � 3.7b,y 47.1 � 3.9a,b,y 36.2 � 4.5a,x,y

60 63.7 � 7.7b,x 49.4 � 8.7b,x 40.5 � 3.7a,x 49.3 � 4.2b,x

Within the same column, values with different superscripts (a and b) are different (P < 0.05). Within the same line,

values with different superscripts (x and y) are different (P < 0.05).



observed in TW and total cell numbers. Group 1 steadily increased through 60 weeks of

age. In contrast, Groups 2–4 reached a maximum MR between 30 and 35 weeks (Fig. 4D).

3.3.3. Estimates of testicular sperm production (TSP)

There were effects of age and treatment (P < 0.01) on TSP between treatment groups

(Fig. 5). In Group 1, TSP increased to 60 weeks of age (maximum TSP, 25.6 � 2.9 � 109

spermatozoa). Alternatively, TSP was maximum (19.0 � 2.7 � 109) at 29 weeks in Group

3, and at 35 weeks for Groups 2 (22.7 � 4.4 � 109) and (22.9 � 1.9 � 109). Due to

variation among individuals at a given age within each group, there were no significant

differences in mean TSP among groups at their maximum. At 48 weeks of age, no

difference between Group 1 (4.6 � 1.9 � 109 spermatozoa) and Group 4 (6.5 � 1.7 � 109

spermatozoa) TSP rates was observed. However, for Groups 2 (22.5 � 1.6 � 109
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Fig. 3. Changes in relative ST volume (A), ST diameter (B), and ST length (C) over time under different

photoperiods. Solid lines with solid circles (7L:17D; short photoperiod). Dashed lines with hollow circles

(10.5L:13.5D; moderately short photoperiod). Solid lines with solid squares (14L:10D; long photoperiod). Dashed

lines with hollow squares (start 7L:14D and added 1 h/week until 14L:10D; increasing photoperiod).



spermatozoa) and 3 (15.3 � 2.6 � 109 spermatozoa) TSP rates were significantly different

from each other and from Groups 1 and 4. At 60 weeks, no significant differences were

observed, either between Groups 3 and 4, or between Groups 1 and 2 (Fig. 5).

3.3.4. Interrelationships between TW, Vr, Ø, nSert, nSpcI, nSpdR, MR, and TSP

There were no significant differences between groups and ages for all stereological

parameters analyzed. Therefore, data from all testes were pooled for analysis of possible
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Fig. 4. Changes in Sertoli (A), Type-I spermatocyte (B), round spermatid (C) cell numbers, and the meiotic ratio

(D) over time under different photoperiods. Solid lines with solid circles (7L:17D; short photoperiod). Dashed

lines with hollow circles (10.5L:13.5D; moderately short photoperiod). Solid lines with solid squares (14L:10D;

long photoperiod). Dashed lines with hollow squares (start 7L:14D and added 1 h/week until 14L:10D; increasing

photoperiod).

Fig. 5. Changes in testicular sperm production over time under different photoperiods. Solid lines with solid

circles (7L:17D; short photoperiod). Dashed lines with hollow circles (10.5L:13.5D; moderately short photo-

period). Solid lines with solid squares (14L:10D; long photoperiod). Dashed lines with hollow squares (start

7L:14D and added 1 h/week until 14L:10D; increasing photoperiod).



correlations between testis weight, Vr, Ø, nSert, nSpcI, nSpdR, MR, and TSP (Table 3).

Correlation coefficients between Lt, NSert, NSpcI, and NSpdR were not estimated due to

the causal dependence between these parameters. There were correlations (P < 0.0001)

between all parameters tested, with values ranging from 0.51 to 0.95 between nSert and

TSP or Ø and nSpcI (Table 4). Testicular weights were highly correlated with Ø, nSpcI and

nSpdR (r = 0.86–0.87). Among other parameters tested, MR was highly correlated with all

other testicular components (values ranging from 0.73 to 0.89), whereas TSP generally had

the lowest correlation coefficients.

4. Discussion

In this study, the impact of photoperiod on the quantitative aspects of testes development

and germ cell stereology was examined in the male breeder turkey. Regardless of

photoperiod, morphological and stereological characteristics of turkey testes were similar

to those of the fowl and guinea-fowl. In mature turkeys, 85–90% of the relative volume of

the testes was occupied by the ST, very similar to the fowl [2] and guinea-fowl [9]. The

histology of the turkey SE seemed identical to that previously described in the fowl and

guinea-fowl. We did not observe a pattern of germ cell associations within the turkey’s SE.

Although these associations have not been observed in the fowl or guinea-fowl SE, there is

a single report that described several stages of germ cell associations in the quail SE [33].

However, these authors based their observations on a single quail and other investigations

with quail [10] failed to detect these associations.

Based on the appearance of BrdU-positive cells, the duration of meiotic prophase (SpcI)

in the turkey was estimated to be 4.5 days, whereas SpdR had an estimated duration of 2

days. These intervals were similar to observations reported in the fowl (5.5 and 2.5 days,

respectively) [12], the drake (5.0 and 2.0 days, respectively) [13] and the quail (3.9 days for

meiotic prophase) [32]. No BrdU-reaction product was observed on el and tspz.

Apparently, condensation of the nuclear chromatin masked the BrdU, the anti-body to

BrdU could not penetrate the condensed chromatin, or both.
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Table 4

Correlation coefficients and probability (Z test) between testis weights (TW), Vr, Ø, nSert, nSpcI, nSpdR, MR, and

TSP

TW Vr Ø nSert nSpcI nSpdR MR TSP

r P r P r P r P r P r P r P r P

TW 1 –

Vr 0.77 * 1 –

Ø 0.86 * 0.94 * 1 –

nSt 0.64 * 0.83 * 0.81 * 1 –

nSert 0.86 * 0.87 * 0.95 * 0.79 * 1 –

nSpdR 0.87 * 0.82 * 0.91 * 0.72 * 0.90 * 1 –

MR 0.79 * 0.86 * 0.89 * 0.74 * NA – NA – 1 –

TSP NA – 0.63 * 0.73 * 0.51 * 0.69 * 0.79 * 0.73 * 1 –

NA: not applicable (dependent measures).
* P < 0.0001.



The effect of the treatment photoperiods on TW, SE histology, and testicular maturation

were more similar to the guinea-fowl [24,25] than the fowl [20–22]. With a strictly short

photoperiod (Group 1), TW and weight-correlated testicular parameters, including Lt,

NSert, NSpcI, NSpdR and TSP, reached a plateau between 26 and 48 weeks of age, and

then increased to the end of the experiment (60 weeks). In contrast, with long constant

(Groups 2 and 3) or increasing photoperiods (Group 4), TW and the weight-correlated

testicular parameters reached maximum values at 29–35 weeks of age. While there were no

significant differences in BW among the four groups, it was clear that the longer

photoperiods used in Groups 2–4 had a stimulatory effect on TW and on weight-correlated

testicular parameters. Interestingly, after Groups 3 and 4 peaked at 29 weeks, slight

declines in TW and the weight-correlated testicular parameters were observed through 60

weeks of age, in agreement with observations from the fowl and guinea-fowl [19–22].

The onset of sexual maturity relative to the length of the photoperiod vary among

domestic birds. As previously observed in guinea-fowl [24], sexual maturity was delayed

by almost 30 weeks in strictly short photoperiod males compared to long photoperiod

(Group 3). In contrast, fowl males subjected to a strictly short photoperiod reached sexual

maturity only 3–6 weeks after that observed in males subjected to a strictly long (16L:8D)

photoperiod [21]. Based on our observations, it is suggested that the threshold of

photosensitivity to gonad stimulation in male turkeys is between 7.0 and 10.5 h of light.

The highly positive correlations observed in this study between TW and germ cell

populations supported this assertion. Therefore, it can be concluded that most of the

variability of the TW in the turkey, fowl, and guinea-fowl can be explained by the variations

in the testicular germ cell populations [22,25]. How photoperiod influences testicular

development in turkeys and, in domestic birds in general, needs to be more clearly

elucidated. In turkeys, plasma concentrations of LH and testosterone are dependent on age

and photoperiod [38]. In chickens, the pathways through which a photoperiodic signal

stimulates LH secretion in the pituitary may involve local pineal-driven mechanisms

associated with mechanisms originating in the retina [39]. More information is needed to

better understand the mechanisms involved in the perception, transmission and

transduction of the photoperiodic signal in the initiation and maintenance of testes in

photosensitive birds.

Our observations of significant differences between testes weight within individual

male turkeys supported observations by Burke [34] and Cecil and Bakst [35,36]. Hocking

[37] observed that the left testis was heavier than the right in 67% of the male chickens, but

concluded that the differences in weights were minor. The basis for testicular asymmetry

remains unknown but may be due to an unequal number of primordial germ cells

incorporated into the embryonic gonads.

In conclusion, early onset of testicular development in turkey males subjected to a

strictly short photoperiod (7L:17D) was dramatically delayed (approximately 30 weeks)

compared to males subjected to a constant long photoperiod (14L:10D). By contrast,

testicular development was only slightly delayed (�3 weeks) in males subjected to a

moderately short photoperiod (10.5L:13.5D) compared to males subjected to a long

constant photoperiod (14L:10D). However, a moderately short photoperiod more

effectively maintained spermatogenesis in middle-aged males. Furthermore, the response

to manual semen collection by males subjected to strictly (7L:17D) or moderately short
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photoperiods (10.5L:13.5D) differed from other males; those on the longer photoperiods

(14L:10D and 7L:17D to 14L10D) readily ejaculated in response to abdominal massage,

whereas those subjected to a strictly (7L:17D) or moderately (10.5L:13.5D) short

photoperiod responded less rapidly and less efficiently to massage. Finally, from a

quantitative perspective, germ cell populations and meiotic ratios should be considered

pertinent histological parameters to depict reproductive stages in breeder male turkeys.
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